

1. Find the value of *x* in each of the following figures:

- 2. The angles of a triangle are in the ratio 3 : 4 : 5. Find the measure of the smallest angle.
- **3.** One of the angles of a triangle measures 80° and the other two angles are equal. Find the measure of each equal angle.
- **4.** Two acute angles of a right-angled triangle are equal. Find the measures of these two angles.
- **5.** In \triangle ABC, \angle A = 50°, \angle B = 70° and the bisector of \angle C meets AB at D. Find the measures of the angles of the triangles ADC and BDC.
- **6.** In \triangle ABC, $\angle A = 100^{\circ}$, AD bisects $\angle A$ and AD \perp BC. Find the measure of $\angle B$.
- 7. The sides of a triangle are produced in order. Find the sum of the measures of the three exterior angles so formed.

- **8.** ABC is a triangle in which $\angle B = \angle C$ and the ray AX bisects the exterior angle DAC. If $\angle DAX = 70^{\circ}$, find the measure of $\angle ACB$. Is AX || BC?
- 9. One angle of a triangle is greater than the sum of the other two. What can you say about the measure of this angle? What type of triangle is this?
- An exterior angle of a triangle measures 108° and its interior opposite angles are in the ratio 4 : 5. Find the measures of the angles of the triangle.
- **11.** In \triangle PQR, \angle P : \angle Q : \angle R = 2 : 3 : 4. Find \angle P, \angle Q and \angle R.
- **12.** In an isosceles triangle, each base angle is four times its vertical angle. Find each angle of the triangle.
- **13.** The three angles of a triangle are represented by $\frac{13x}{3}$, $\frac{7x}{3}$ and $\frac{5x}{6}$. Find the measure of its obtuse angle.
- **14.** In the adjoining figure, ABC and DBC are two isosceles triangles such that $\angle A = 40^{\circ}$ and $\angle D = 100^{\circ}$. Find $\angle ABD$.

15. In Fig. 14.3 below, ABC is a triangle and line segment DE is parallel to BC. Find *x*, *y* and *z* from it.

- **16.** In Fig. 14.4 below, find the measures of $\angle x$ and $\angle y$.
- **17.** In Fig. 14.5 below, find: (*a*) \angle ACD (*b*) \angle AED.
- **18.** In Fig. 14.6 below, find $\angle ABD$. Also, if $\angle ACB = 2 \angle ABC$, find $\angle ABC$.

19. Find the unknown marked angles in each of the following triangles:

20.	In right-angled triangle ABC, right-angled at B, if AB = 15 cm,
	AC = 17 cm, find the length of (a) BC and (b) BM.

Μ

в