

Fundamentals of Python Programming

•Interactive, interpreted, and object-oriented

programming language.

• Platform independent.

•Simple syntax, Free and Open source.

• Portable, extensible and expandable.

• Large standard libraries to solve a task.

•Developed by Guido Van Rossum in 1991 at the

National Research Institute for Mathematics and

Computer Science in the Netherlands.

•Name was inspired by: Monty Python’s Flying

Circus.

• Allows to distinguish input, output, and error
messages by different colour codes.

PYTHON PROGRAMMING ENVIRONMENT

• Available on a wide variety of platforms including Windows,

Linux and Mac OS X.

• Official Website: python.org

• IDLE stands for Integrated Development and Learning

Environment. Python IDLE comprises of Python Shell and

Python Editor.

Python Shell Python Editor

https://python.org/

• Reserved words that are already defined by the

Python for specific uses.

In [] : import keyword

print(keyword.kwlist)

Sample Python Command Line Expressions

Display on screen

In [2]: print('hello world')

hello world

Since, Python is a case-sensitive language so print and
PRINT are different.

Names (Variables) and Assignment Statements

• Variables provide a means to name values so that they can be

used and manipulated later.

• Assignment Statement: Statement that assigns value to a

variable.

In [] : Maths = 87

print(Maths)

87

Python associates the name (variable) Maths with value 87 i.e.

the name (variable) Maths is assigned the value 87, or that the

name (variable) Maths refers to value 87. Values are also called

objects.

Multiple Assignments

•Used to enhance the readability of the program.

>>> msg, day, time='Meeting','Mon','9‘

>>> print (msg,day,time)

Meeting Mon 9

totalMarks = count = 0

Data Types and Associating them with variables

Arithmetic Operators

print("18 + 5 =", 18 + 5)

print("18 - 5 =", 18 - 5)

print("18 * 5 =", 18 * 5)

print("27 / 5 =", 27 / 5)

print("27 / / 5 =", 27 / / 5)

print("27 5 =", 27 5)

print("2 ** 3 =", 2 ** 3)

print("-2 ** 3 =", -2 ** 3)

18 + 5 = 23

18 - 5 = 13

18 * 5 = 90

27 / 5 = 5.4

27 / / 5 = 5

27 5 = 2

2 ** 3 = 8
-2 ** 3 = -8

#Addition

#Subtraction

#Multiplication

#Division

#Integer Division

#Modulus

#Exponentiation

#Exponentiation

Precedence of Arithmetic Operators

Operators in Python

Relational Operators

• Used for comparing two expressions and yield True or False.

• The arithmetic operators have higher precedence than the

relational operators.

print("23 < 25 : " , 23 < 25)

print("23 > 25 : " , 23 > 25)

print("23 <= 23 : " , 23 <= 23) #less than or equal to

print("23 - 2.5 >= 5 * 4 : " , 23 - 2.5 >= 5 * 4) #greater than or equal to

print("23 == 25 : " , 23 == 25)

print("23 != 25 : " , 23 != 25)

• When the relational operators are applied to strings, strings are compared

left to right, char- acter by character, based on their ASCII codes, also called

ASCII values.

pr int (" 'hel lo ' < 'Hello ' : " , ' he l lo ' < 'Hello ')

pr int (" 'h i ' > ' he l lo ' : " , ' h i ' > ' he l lo ')

'he l lo ' < 'Hello' : False

' h i ' > 'he l lo ' : True

#less than

#greater than

#equal to

#not equal to

Logical Operators

• The logical operators not, and, and or are applied to logical

operands True and False, also called Boolean values, and yield

either True or False.

• As compared to relational and arithmetic operators, logical

operators have the least precedence level.

print("not True < 25

print("10 < 25 and 5 >6

print("10 < 25 or 5 > 6

:" , not True) #not operator

: " , 10 < 25 and 5 > 6) #and operator

: " , 10 < 25 or 5 > 6) #or operator

Identity Operators

Precedence of Operators

Functions

• Functions provide a systematic way of problem solving by dividing the

given problem into several sub-problems, finding their individual

solutions, and integrating the solutions of individual problems to solve

the original problem.

• This approach to problem solving is called stepwise refinement method

or modular approach.

Built-in Functions

• Predefined functions that are already available in Python.

Type Conversion: int, float, str functions

>>>str(123)

'123'

>>>int('234')

234

>>>int(234.8)

234

input function

• Enables us to accept an input string from the user

without evaluating its value.

• The function input continues to read input text from the user until it

encounters a newline.

>>>name = input('Enter your name: ')

print('Welcome', name)

Enter your name: Yogesh

Welcome Yogesh

costPrice = int(input('Enter cost price: '))

profit = int(input('Enter profit: '))

sellingPrice = costPrice + profit

print('Selling Price: ' , sellingPrice)

Enter cost price: 50

Enter profit: 12

Selling Price: 62

Another
Example: To find
the profit earned
on an item

Function Definition and Call
The syntax for a function definition is as follows:

def function_name (comma_separated_list_of_parameters):

statements

Note: Statements below def begin with four spaces. This is called indentation. It is a

require-ment of Python that the code following a colon must be indented.

def t r iangle () :

' ' '

Objective: To print a right angled tr iangle. Input

Parameter: None

Return Value: None

' ' '

' ' '

Approach: To use a print statement for each l ine of output

' ' '

pr in t (' * ')

pr in t ('* * ')

pr in t ('* * * ')

pr in t ('* * * * ')

User-Defined Functions

Invoking the function

>>>triangle()

*

* *

* * *
* * * *

Computing Area of the Rectangle

def areaRectangle(length, breadth):

' ' '

Objective: To compute the area of rectangle Input

Parameters: length, breadth numeric value Return

Value: area - numeric value

' ' '

area = length * breadth

return area

>>>areaRectangle(7,5)

35

>>>help(areaRectangle) #help on any function

Help on function areaRectangle in module main :

areaRectangle(length, breadth)

Objective: To compute the area of rectangle
Input Parameters: length, breadth numeric value

Return Value: area - numeric value

#This else is for break and not for if statement

Strings, Lists, Tuples
and Dictionary

Strings
• A string is a sequence of characters.
• A string may be specified by placing the member characters of
the sequence within quotes
(single, double or triple).
• Triple quotes are typically used for strings that span multiple
lines.
>>>message = 'Hello Gita'
❖Computing Length using len function
>>>print(len(message))
10

Indexing
• Individual characters within a string are accessed using a technique
known as indexing.

>>>index = len(message) - 1
>>>print(message[0], message[6], message[index], message[-1])
H G a a
>>>print(message[15])
IndexError Traceback (most recent call last)
<ipython-input-4-a801df50d8d1> in <module>()
----> 1 print(message[15])

Slicing
• In order to extract the substring comprising the character sequence
having indices from start to end-1, we specify the range in the form
start:end.
• Python also allows us to extract a subsequence of the form

start:end:inc.
>>>message = 'Hello Sita'
>>>print(message[0:5], message[-10:-5])
Hello Hello
>>>print(message[0:len(message):2])
>>>print(message[:])
HloSt
Hello Sita
Membership Operator in
• Python also allows us to check for membership of the individual
characters or substrings in
strings using in operator.

>>>'h' in 'hello'
True
>>>'ell' in 'hello'
True
>>>'h' in 'Hello'
False

Lists
• A list is an ordered sequence of values.
• Values stored in a list can be of any type such as string, integer, float,
or list.
• Note!! Elements of a list are enclosed in square brackets, separated by
commas.
• Unlike strings, lists are mutable, and therefore, one may modify
individual elements of a list.

>>>subjects=['Hindi', 'English', 'Maths', 'History']

>>>temporary = subjects

>>>temporary[0] = 'Sanskrit'
>>>print(temporary)
>>>print(subjects)

['Sanskrit', 'English', 'Maths', 'History']
['Sanskrit', 'English', 'Maths', 'History']
>>>subjectCodes = [['Sanskrit', 43], ['English', 85] , ['Maths', 65],
['History', 36]]

>>>subjectCodes[1]
['English', 85]
>>>print(subjectCodes[1][0],subjectCodes[1][1])
English 85

List Operations
>>>list1 = ['Red', 'Green']
list2 = [10, 20, 30]
Multiple Operator *
>>>list2 * 2
[10, 20, 30, 10, 20, 30]
Concatenation Operator +
>>> list1 = list1 + ['Blue']
>>>list1
['Red', 'Green', 'Blue']

Length Operator len
>>>len(list1)
3
Indexing & Slicing
>>>list2[-1]
30
>>>list2[0:2]
[10, 20]
>>>list2[0:3:2]
[10, 30]

Function min & max
>>>min(list2)
10
>>>max(list1)
'Red'

Membership Operator: in
>>>40 in list2
False
>>>students = ['Ram', 'Shyam', 'Gita', 'Sita']
for name in students:
print(name)

Ram
Shyam
Gita
Sita

Tuples and Dictionaries

Tuples

Note: Elements of a tuple can be possibly of heterogeneous types

Tuples can be represented with or without
Paranthesis ()

Dictionary { }

Preeti Arora

preetiarora.author@gmail.com

